Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

A new aquamanganese(II) oxalate phosphate, $\mathrm{Mn}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \mathrm{Mn}_{3}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$

Juan Zheng, Yuxia Shen, Tao Song and Aiyun Zhang*
Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
Correspondence e-mail: zay@hpu.edu.cn

Received 9 March 2009; accepted 31 March 2009
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$;
R factor $=0.026 ; w R$ factor $=0.065$; data-to-parameter ratio $=15.6$.

The title salt, diaquatetramanganese(II) oxalate bis[orthophosphate $(\mathrm{V})]$, $\mathrm{Mn}_{4}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$, was synthesized hydrothermally and displays a three-dimensional framework structure. The asymmetric unit consists of two different $\mathrm{Mn}^{\text {II }}$ centers, half of an oxalate anion, a phosphate group and a coordinated water molecule. A crystallographic inversion center is located at the mid-point of the oxalate $\mathrm{C}-\mathrm{C}$ bond. The distorted octahedral MnO_{6} and the tetragonal pyramidal MnO_{5} centers are linked through bridging oxalate and phosphate groups. The water molecule also has a weaker bonding contact to the five-coordinate Mn atom, which consequently exhibits a distorted octahedral geometry and also bridges the independent Mn atoms. The water molecule is a donor for intra- and intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For the structure of $\mathrm{HgC}_{2} \mathrm{O}_{4}$ from synchrotron, X-ray and neutron powder diffraction data, see: Christensen et al. (1994). For a polymeric $\left[\mathrm{Ni}^{\mathrm{II}}(\mathrm{bpy})_{3}\right]_{n}{ }^{2+}\left[\mathrm{Mn}^{\mathrm{II}}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]_{n}{ }^{2-}$ oxalatebridged network structure, see: Decurtins et al. (1994). For the structures of indium selenite-oxalate and indium oxalate, see: Cao et al. (2009). For lanthanide-oxalate coordination polymers, see: Zhang et al. (2009).

Experimental

Crystal data

$\mathrm{Mn}_{4}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$	$V=601.73(2) \AA^{3}$
$M_{r}=266.88$	$Z=4$
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation
$a=10.2759(2) \AA$	$\mu=4.45 \mathrm{~mm}^{-1}$
$b=6.5220(1) \AA$	$T=296 \mathrm{~K}$
$c=10.0701(1) \AA$	$0.21 \times 0.19 \times 0.17 \mathrm{~mm}$
$\beta=116.926(1)^{\circ}$	

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2007)
$T_{\text {min }}=0.455, T_{\text {max }}=0.519$
(expected range $=0.412-0.470)$
5971 measured reflections 1653 independent reflections 1467 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.031$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.065$
$S=1.05$
1653 reflections
106 parameters
3 restraints
independent and constrained refinement
$\Delta \rho_{\text {max }}=0.47 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.55 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Mn} 1-\mathrm{O}^{\mathrm{i}}$	$2.1199(15)$	$\mathrm{Mn} 2-\mathrm{O} 2^{\mathrm{iv}}$	$2.1145(15)$
$\mathrm{Mn} 1-\mathrm{O} 3^{\text {ii }}$	$2.1407(15)$	$\mathrm{Mn} 2-\mathrm{O} 4^{\text {ii }}$	$2.1218(15)$
$\mathrm{Mn} 1-\mathrm{O} 1$	$2.1584(15)$	$\mathrm{Mn} 2-\mathrm{O} 1$	$2.1220(16)$
$\mathrm{Mn} 1-\mathrm{O} 3^{\mathrm{iii}}$	$2.2219(15)$	$\mathrm{Mn} 2-\mathrm{O} 6^{\mathrm{v}}$	$2.1809(17)$
$\mathrm{Mn} 1-\mathrm{O} 5$	$2.2525(15)$	$\mathrm{Mn} 2-\mathrm{O} 5$	$2.2190(16)$
$\mathrm{Mn} 1-\mathrm{O} 7 W$	$2.2637(17)$	$\mathrm{Mn} 2-\mathrm{O} 7 W^{\mathrm{vi}}$	$2.5641(14)$

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2} ; \quad$ (ii) $\quad-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (iii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (iv) $-x+1,-y,-z+1$; (v) $-x,-y,-z$; (vi) $x,-y+\frac{1}{2}, z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 7 W-\mathrm{H} 7 A \cdots \mathrm{O}$	0.85 (2)	2.00 (2)	2.828 (3)	167 (3)
$\mathrm{O} 7 W-\mathrm{H} 7 B \cdots \mathrm{O} 4^{\text {vii }}$	0.86 (2)	1.95 (2)	2.787 (2)	167 (3)

Symmetry code: (vii) $-x+1,-y,-z$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Main Teacher Project of Hena Province (Reference 649082)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2161).

References

Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cao, J.-J., Li, G.-D. \& Chen, J.-S. (2009). J. Solid State Chem. 182, 102-106.
Christensen, A. N., Norby, P. \& Hanson, J. C. (1994). Z. Kristallogr. 209, 874 877.

Decurtins, S., Schmalle, H. W., Schneuwly, P., Ensling, J. \& Gütlich, P. (1994). J. Am. Chem. Soc. 116, 9521-9528.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zhang, X. J., Xing, Y. H., Wang, C. G., Han, J., Li, J., Ge, M. F., Zeng, X. Q. \& Niu, S. Y. (2009). Inorg. Chim. Acta, 362, 1058-1064.

supplementary materials

Acta Cryst. (2009). E65, i32 [doi:10.1107/S160053680901201X]

A new aquamanganese(II) oxalate phosphate, $\mathbf{M n}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \mathbf{M n}_{\mathbf{3}}\left(\mathrm{PO}_{\mathbf{4}}\right)_{\mathbf{2}}\left(\mathbf{H}_{\mathbf{2}} \mathrm{O}\right)_{\mathbf{2}}$

J. Zheng, Y. Shen, T. Song and A. Zhang

Comment

Over the past decades, the synthesis of new two and three dimensional inorganic materials has received great attention, due to their functional applications. Among the hybrid compounds are metal oxalates which exhibit vast diversity and unusual structural features. The oxalate anion displays various coordination modes when it is bound to metal cations. For example, the structures of $\mathrm{HgC}_{2} \mathrm{O}_{4}$ (Christensenet al., 1994), $\left[\mathrm{In}_{2}\left(\mathrm{SeO}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2} 2\left(\mathrm{H}_{2} \mathrm{O}\right)$ (Cao et al., 2009) and $\mathrm{Nd}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{CH}_{3} \mathrm{COO}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)$ (Zhang et al., 2009) have been investigated in the past years. In this work, we designed and synthesized the title compound, $\mathrm{MnC}_{2} \mathrm{O}_{4} \mathrm{Mn}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot 2\left(\mathrm{H}_{2} \mathrm{O}\right)$, which features a three-dimensional framework.

In the structure of the title compound, there are two $\mathrm{Mn}^{\mathrm{II}}$ atoms, one phosphate, a half oxalate and one water per asymmetric unit (Fig. 1). Mn1 has a MnO_{6} octahedral coordination environment, but Mn 2 is coordinated with five oxygen atoms (Fig. 2 and Fig. 3). The Mn-O oxalate distances (Table 1) are slightly longer than the Mn—O distances of 2.154 (2) \AA and 2.166 (2) \AA, observed in the polymeric anionic network structure $\left[\mathrm{Ni}^{\mathrm{II}}(\mathrm{bpy})_{3}\right]^{2+}{ }_{\mathrm{n}}\left[\mathrm{Mn}^{\mathrm{II}}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]_{\mathrm{n}}{ }^{2-}$ (Decurtins et al., 1994). The distorted octahedral MnO_{6} and tetragonal pyramidal MnO_{5} centers are linked through bridging oxalate and phosphate groups (Fig. 3). The water molecule has also a weaker bonding contact to the five coordinate atom Mn 2 , which consequently exhibits a distorted octahedral geometry and bridges the independent atoms Mn 1 and Mn 2 as well. The water molecule is a donor for intra- and intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

Experimental

Colorless block crystals were synthesized hydrothermally from a mixture of, $\mathrm{H}_{3} \mathrm{BO}_{3}, \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, ethylenediamine, $\mathrm{H}_{3} \mathrm{PO}_{4}$ and water. In a typical synthesis, $0.98 \mathrm{~g} \mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ was dissolved in a mixture of 5 mL water, with $0.92 \mathrm{~g} \mathrm{H}_{3} \mathrm{BO}_{3}, 2$ $\mathrm{ml}(85 \%) \mathrm{H}_{3} \mathrm{PO}_{4}$ and 0.05 ml ethylenediamine at constant stirring. Finally, the mixture was kept in a 30 ml Teflon - lined steel autoclave at 443 K for 5 days. The autoclave was slowly cooled to room temperature. Colorless block crystals of the title compound were obtained.

Refinement

The H atoms of the coordinated water molecule were refined with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$ and distance restraints $\mathrm{d}(\mathrm{O}-\mathrm{H})$ of 0.85 (1) \AA and $\mathrm{d}(\mathrm{H} \cdots \mathrm{H})$ of 1.33 (1) \AA, respectively. The highest peak in the difference map is $0.47 \mathrm{e} / \AA^{3}$, and $0.75 \AA$ from O 4 , and the minimum peak is $-0.55 \mathrm{e} / \AA^{3}$, and $0.60 \AA$ from Mn1.

supplementary materials

Figures

Fig. 1. A section of the coordination geometry in the title polymer structure. Displacement ellipsoids are drawn at the 50% the probability level. Symmetrycodes: $(A)=-x+1, y-1 / 2,-z+$ $1 / 2 ;(\mathrm{B})=-x+1, y+1 / 2,-z+1 / 2 ;(\mathrm{C})-x,-y,-z ;(\mathrm{D})=-x+1,-y,-z+1 ;(\mathrm{E})=x,-y+1 / 2, z-1 /$ 2;

Fig. 2. Packing diagram for $\mathrm{Mn}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \mathrm{Mn}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, viewed along the b axis.
poly[diaqua- μ-oxalato-di- μ-phosphato-tetramanganese(II)]

Crystal data

$\left[\mathrm{Mn}_{4}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=266.88$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=10.2759$ (2) \AA
$b=6.5220$ (1) \AA
$c=10.0701$ (1) \AA
$\beta=116.926(1)^{\circ}$
$V=601.728(16) \AA^{3}$
$Z=4$
$F_{000}=516$
$D_{\mathrm{x}}=2.946 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 2504 reflections
$\theta=2.2-29.9^{\circ}$
$\mu=4.45 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colourless
$0.21 \times 0.19 \times 0.17 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=296 \mathrm{~K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\text {min }}=0.455, T_{\text {max }}=0.519$
1653 independent reflections
1467 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=29.9^{\circ}$
$\theta_{\text {min }}=2.2^{\circ}$
$h=-14 \rightarrow 11$
$k=-9 \rightarrow 8$
5971 measured reflections
$l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.065$
$S=1.05$
1653 reflections
106 parameters
3 restraints

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0352 P)^{2}+0.1904 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.47 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.55$ e \AA^{-3}
Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Mn1	$0.38352(4)$	$0.14623(5)$	$0.02672(4)$	$0.01004(10)$
Mn2	$0.26622(4)$	$-0.02679(6)$	$0.26753(4)$	$0.01198(10)$
P1	$0.60110(6)$	$0.15130(8)$	$0.39476(6)$	$0.00740(13)$
O1	$0.45405(17)$	$0.0984(2)$	$0.26145(16)$	$0.0123(3)$
O2	$0.65691(17)$	$-0.0342(2)$	$0.50294(16)$	$0.0110(3)$
O3	$0.57805(17)$	$0.3259(2)$	$0.48610(17)$	$0.0112(3)$
O4	$0.71121(17)$	$0.2029(2)$	$0.33744(17)$	$0.0124(3)$
O5	$0.17132(17)$	$0.0906(3)$	$0.03574(17)$	$0.0148(3)$
O6	$-0.03134(18)$	$0.0699(3)$	$-0.18037(17)$	$0.0174(4)$
O7W	$0.22135(19)$	$0.1426(2)$	$-0.21781(18)$	$0.0157(4)$
H7A	$0.1384(17)$	$0.118(4)$	$-0.222(3)$	0.019^{*}
H7B	$0.231(3)$	$0.043(3)$	$-0.268(3)$	0.019^{*}
C1	$0.0400(2)$	$0.0465(3)$	$-0.0428(2)$	$0.0122(4)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	$0.01109(18)$	$0.00852(19)$	$0.01143(17)$	$0.00060(12)$	$0.00591(14)$	$0.00116(11)$
Mn2	$0.00891(18)$	$0.0177(2)$	$0.00885(17)$	$-0.00151(13)$	$0.00360(14)$	$-0.00260(12)$
P1	$0.0080(3)$	$0.0070(3)$	$0.0073(2)$	$-0.00008(19)$	$0.0035(2)$	$-0.00015(18)$
O1	$0.0098(8)$	$0.0162(8)$	$0.0092(7)$	$-0.0004(6)$	$0.0027(6)$	$0.0008(6)$
O2	$0.0140(8)$	$0.0081(8)$	$0.0102(7)$	$0.0009(6)$	$0.0050(6)$	$0.0013(5)$
O3	$0.0140(8)$	$0.0099(8)$	$0.0126(7)$	$-0.0005(6)$	$0.0084(7)$	$-0.0016(6)$
O4	$0.0129(8)$	$0.0130(8)$	$0.0133(7)$	$-0.0006(6)$	$0.0078(6)$	$0.0011(6)$
O5	$0.0088(8)$	$0.0214(9)$	$0.0121(7)$	$-0.0022(7)$	$0.0031(6)$	$0.0005(6)$
O6	$0.0105(8)$	$0.0299(10)$	$0.0111(7)$	$-0.0017(7)$	$0.0041(7)$	$0.0022(7)$
O7W	$0.0160(9)$	$0.0179(9)$	$0.0156(8)$	$-0.0021(7)$	$0.0091(7)$	$-0.0014(6)$
C1	$0.0106(10)$	$0.0137(11)$	$0.0134(10)$	$0.0008(8)$	$0.0064(9)$	$-0.0014(8)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Mn} 1-\mathrm{O} 2{ }^{\text {i }}$	2.1199 (15)
$\mathrm{Mn} 1-\mathrm{O} 3^{\text {ii }}$	2.1407 (15)
Mn1-O1	2.1584 (15)
Mn1-O3 $3^{\text {iii }}$	2.2219 (15)
Mn1-O5	2.2525 (15)
Mn1-O7W	2.2637 (17)
$\mathrm{Mn} 2-\mathrm{O} 2^{\mathrm{iv}}$	2.1145 (15)
$\mathrm{Mn} 2-\mathrm{O} 4{ }^{\text {ii }}$	2.1218 (15)
Mn2-O1	2.1220 (16)
$\mathrm{Mn} 2-\mathrm{Ob}^{\text {V }}$	2.1809 (17)
Mn2-O5	2.2190 (16)
$\mathrm{Mn} 2-\mathrm{O} 7 \mathrm{~W}^{\mathrm{vi}}$	2.5641 (14)
P1-O4	1.5225 (15)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 3{ }^{\text {ii }}$	168.73 (6)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Mn} 1-\mathrm{O} 1$	104.10 (6)
$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{Mn} 1-\mathrm{O} 1$	86.86 (6)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Mn} 1-\mathrm{O} 3{ }^{\text {iii }}$	91.66 (6)
$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{Mn} 1-\mathrm{O} 3^{\text {iii }}$	82.11 (6)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 3^{\text {iii }}$	109.24 (6)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 5$	91.86 (6)
$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{Mn} 1-\mathrm{O} 5$	93.07 (6)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 5$	77.51 (6)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Mn} 1-\mathrm{O} 5$	171.35 (6)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Mn} 1-\mathrm{O} 7 \mathrm{~W}$	81.74 (6)
$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{Mnl-O} 7 \mathrm{~W}$	89.39 (6)
O1—Mn1-O7W	155.02 (6)

P1-O1	1.5386 (16)
P1-03	1.5481 (15)
P1-O2	1.5534 (15)
$\mathrm{O} 2-\mathrm{Mn} 2{ }^{\text {iv }}$	2.1145 (15)
$\mathrm{O} 2-\mathrm{Mn} 1^{\text {ii }}$	2.1199 (15)
$\mathrm{O} 3-\mathrm{Mn} 1^{\mathrm{i}}$	2.1407 (15)
$\mathrm{O} 3-\mathrm{Mn} 1{ }^{\text {vi }}$	2.2219 (15)
$\mathrm{O} 4-\mathrm{Mn} 2{ }^{\text {i }}$	2.1218 (15)
O5-C1	1.250 (3)
O6- C 1	1.249 (3)
O7W-H7A	0.85 (2)
O7W-H7B	0.86 (2)
$\mathrm{C} 1-\mathrm{C}{ }^{\text {v }}$	1.558 (4)
$\mathrm{O} 4-\mathrm{P} 1-\mathrm{O} 1$	108.88 (8)
$\mathrm{O} 4-\mathrm{P} 1-\mathrm{O} 3$	113.75 (9)
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 3$	109.23 (9)
$\mathrm{O} 4-\mathrm{P} 1-\mathrm{O} 2$	109.64 (9)
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2$	110.00 (9)
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 2$	105.28 (8)
$\mathrm{P} 1-\mathrm{O} 1-\mathrm{Mn} 2$	127.44 (9)
$\mathrm{P} 1-\mathrm{O} 1-\mathrm{Mn} 1$	129.28 (9)
$\mathrm{Mn} 2-\mathrm{O} 1-\mathrm{Mn} 1$	103.21 (7)
$\mathrm{P} 1-\mathrm{O} 2-\mathrm{Mn} 2^{\mathrm{iv}}$	117.17 (8)
$\mathrm{P} 1-\mathrm{O} 2-\mathrm{Mn} 1^{\text {ii }}$	132.87 (9)
$\mathrm{Mn} 2^{\mathrm{iv}}-\mathrm{O} 2-\mathrm{Mn} 1^{\mathrm{ii}}$	106.93 (6)
$\mathrm{P} 1-\mathrm{O} 3-\mathrm{Mn} 1^{\mathrm{i}}$	126.88 (9)

sup-4

supplementary materials

O3 ${ }^{\text {iii }}-\mathrm{Mn} 1-\mathrm{O} 7 \mathrm{~W}$	94.65 (6)	$\mathrm{P} 1-\mathrm{O} 3-\mathrm{Mn} 1^{\text {vi }}$	124.19 (9)
O5-Mn1-O7W	78.05 (6)	$\mathrm{Mn} 1{ }^{\mathrm{i}}-\mathrm{O} 3-\mathrm{Mn} 1^{\text {vi }}$	97.89 (6)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Mn} 2-\mathrm{O} 7 \mathrm{~W}^{\mathrm{vi}}$	154.66 (7)	$\mathrm{P} 1-\mathrm{O} 4-\mathrm{Mn} 2{ }^{\text {i }}$	129.80 (9)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Mn} 2-\mathrm{O} 44^{\text {ii }}$	129.04 (6)	C1-O5-Mn2	114.85 (14)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Mn} 2-\mathrm{O} 1$	93.71 (6)	C1-O5-Mn1	143.03 (14)
$\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Mn} 2-\mathrm{O} 1$	89.96 (6)	$\mathrm{Mn} 2-\mathrm{O} 5-\mathrm{Mn} 1$	97.22 (6)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Mn} 2-\mathrm{O}^{\text {v }}$	105.17 (6)	$\mathrm{C} 1-\mathrm{O} 6-\mathrm{Mn} 2{ }^{\text {v }}$	114.67 (14)
$\mathrm{O} 44^{\mathrm{ii}}-\mathrm{Mn} 2-\mathrm{O} 6^{\mathrm{V}}$	92.47 (6)	Mn1-O7W-H7A	106.7 (18)
$\mathrm{O} 1-\mathrm{Mn} 2-\mathrm{O}^{\text {V }}$	153.30 (6)	Mn1-O7W-H7B	115.2 (18)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Mn} 2-\mathrm{O} 5$	148.61 (6)	H7A-O7W-H7B	101.8 (13)
$\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Mn} 2-\mathrm{O} 5$	81.83 (6)	$\mathrm{O} 6-\mathrm{C} 1-\mathrm{O} 5$	126.6 (2)
$\mathrm{O} 1-\mathrm{Mn} 2-\mathrm{O} 5$	78.99 (6)	O6-C1-C1 ${ }^{\text {v }}$	118.0 (2)
$\mathrm{O}^{\mathrm{v}}-\mathrm{Mn} 2-\mathrm{O} 5$	75.05 (6)	$\mathrm{O} 5-\mathrm{C} 1-\mathrm{Cl}{ }^{\text {v }}$	115.4 (2)

Symmetry codes: (i) $-x+1, y+1 / 2,-z+1 / 2$; (ii) $-x+1, y-1 / 2,-z+1 / 2$; (iii) $x,-y+1 / 2, z-1 / 2$; (iv) $-x+1,-y,-z+1$; (v) $-x,-y,-z$; (vi) x, $-y+1 / 2, z+1 / 2$.

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O7W—H7A $\cdots \mathrm{O} 6$	$0.85(2)$	$2.00(2)$	$2.828(3)$	$167(3)$
O7W—H7B $\cdots 4^{\text {vii }}$	$0.86(2)$	$1.95(2)$	$2.787(2)$	$167(3)$
Symmetry codes: (vii) $-x+1,-y,-z$.				

supplementary materials

Fig. 1

Fig. 2

Fig. 3

